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Nomenclature
x*, y*, z* = co-ordinate system with

nodal origin
u* = horizontal velocity in the

x* direction
v* = vertical velocity in the y*

direction
w* = velocity in the z* direction
p* = pressure
t* = time
x, y, z = non-dimensional

co-ordinate system with
nodal origin

t = non-dimensional time
U = reference velocity
g = gravitational acceleration
∆t = time step
ppp = non-dimensional pressure

at the cell centres
X, M = unknown quantities
a, b, c, d, e, f, s = coefficients
A, B, C, D, E, F = coefficients
U1, U2, U3, U4 = coefficients
V1, V2, V3, V4 = coefficients
W1, W2, W3, W4 = coefficients
c1 to c20 = coefficients

Greek letters
α = thermal diffusivity
β = thermal expansion coefficient
ρ = density
µ = viscosity
ν = kinematic viscosity
ε = iterative error
ω = over-relaxation parameter
ωu– = over-relaxation parameter

for u– calculation
ωv– = over-relaxation parameter

for v– calculation

ωw– = over-relaxation parameter
for w– calculation

ωppp = over-relaxation parameter
for ppp calculation

ωθ = over-relaxation parameter
for θ calculation

Γ = system boundary
θ* = temperature
θ*r = reference temperature
θ*h = maximum (hot) temperature
θ*c = minimum (cold) temperature
θ1, θ2, θ3, θ4 = coefficients

Subscripts
i = grid point counter in the x

direction
j = grid point counter in the y

direction
k = grid point counter in the z

direction
r = grid point counter in the x–

direction
s = grid point counter in the y–

direction
t = grid point counter in the z–

direction

Superscripts
m = dummy time index for counting

iterations
n = time index

Non-dimensional numbers
Ra = Rayleigh number
Re = Reynolds number
Pr = Prandtl number
Nu = Nusselt number

Note: The symbols defined above are subject to alteration on occasion
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Introduction
Three-dimensional buoyancy-driven flow phenomena are part of everyday life.
The flow of air in a building, the heating and cooling of electronic equipment by
natural and forced convection and the heating of bottled products for
pasteurization are only a few examples of how three-dimensional flows are
manipulated. Nevertheless, accurate simulation of these problems is desired in
order to obtain quantitative and qualitative information which can then be used
to improve and even maximize the effectiveness of the processes that these
flows regulate. This is no simple task, owing not only to the complexity of both
the equations and the domains in question, but also to computational time
limitations. However, the implementation of finite difference schemes for the
solution of the pertaining partial differential equations has proven successful
now and in the past.

Buoyancy-driven flows, especially in two dimensions, have been the object of
thorough study for over 50 years. Owing to the nature of these partial
differential equations, most studies in the past have dealt with simplified
rectangular domains with different aspect ratios. Nevertheless, without a
rigorous, accurate and well understood numerical solution, there was no real
way of comparing different numerical schemes in terms of their accuracy, and
no way of validating their solutions. 

In 1983, de Vahl Davis[1] presented a study which became a benchmark
solution for the basic problem of a square cavity (1:1 ratio of height and width)
which is heated from the left, cooled on the right and insulated on its top and
bottom boundaries. He used the stream-vorticity formulation of the governing
equations. Today, there are a few other benchmark solutions available, such as
that by Saitoh and Hirose[2]. These solutions are now used as validation tools
for both old and new schemes and solutions. Most present computational fluid
dynamic studies of buoyant-driven flows use this benchmark problem as their
test problem.

With the accelerated rate at which computer speed has increased in the past
30 years and the drop in the cost of performing computations[3], problems that
could not be solved years ago are now within our grasp. One such area deals
with the study of three-dimensional fluid dynamic problems, and in particular
with Navier-Stokes flows in three dimensions. We have been involved in the
study of the confined flow of a laminar, incompressible and viscous fluid which
is subjected to differential heating and is characterized by two dimensionless
parameters: the Rayleigh number and the Prandtl number. In the study the
Prandtl number is 1 and the Rayleigh number is varied from 103 to 106. This
involves the solution of the coupled momentum, energy and continuity
equations for a fluid. Our goal is to show that the available computer resources
are sufficient for the solution of simple and complex three-dimensional
problems, that the use of iterative schemes in three dimensions is easy to
implement, and that with careful tracking of the problem variables these
schemes can generate fast and accurate solutions. To accomplish these goals,
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we have duplicated and extended several two-dimensional studies into three
dimensions.

We have implemented the fractional step method or projection method
proposed by Chorin[4]. Using such an approach we are able to solve the
governing equations in their primitive variable form, obtain an explicit
formulation for the pressure together with valid boundary conditions for it, and
march accurately through time. The pressure calculations are initially done at
the centre of the mesh cells, but it is later distributed to the mesh nodes in order
to correct the fluid velocities at those points.

In order to solve for the unknowns, we identified about a dozen possible
solution algorithms[3,5]. We chose to use the point succesive over-relaxation
(PSOR) scheme because, using a first-order accurate finite difference in time as
did Fortin[4], the fractional step method transforms the hyperbolic governing
equations over time into elliptic equations at every time step. The PSOR scheme
is efficient in the solution of elliptic partial differential equations and it is
relatively easy to implement in the computer. It is also very flexible in terms of
the required accuracy, which can be controlled by changing the tolerance of the
iterative solver.

Mathematical model and numerical algorithms
Problem formulation and governing equations
In the current study, the fluid in question is considered to be incompressible and
viscous, the flow is laminar, and the domain is three dimensional (3D). To
examine the fluid flow, we will solve the unsteady Navier-Stokes equations
coupled with the energy equation, all in their primitive variable (u-v-w-p-θ) form.
In this formulation u, v and w represent the fluid velocities in the x, y and z
directions respectively, while p and θ represent pressure and temperature in
that order. This approach was selected over the streamline-vorticity approach
owing to the fact that the primitive variable introduces unknowns that are
directly observable in real-life systems.

A three-dimensional volume is discretized by a regular mesh with spacings
of length ∆x, ∆y and ∆z such that the number of grid points in the x, y and z
directions is Nx, Ny and Nz, respectively. The length of the cavity in the x
direction is L, the length of the cavity in the y direction is H, and the length in
the z direction is W.

By introducing a reference velocity

(1)

the set of non-dimensional variables

(2)

(3)



HFF
7,4

300

(4)

(5)

(6)

is generated, as well as the set of dimensionless parameters

(7)

(8)

(9)

Given these, we can write the momentum, energy and conservation of mass
equations as

(10)

(11)

(12)

(13)

(14)

where, in our study,

(15)

As we can observe from the equations, there is no explicit formulation for the
pressure. This is one of the reasons why the primitive variable formulation is
sometimes avoided. In addition, there is no explicit information available about
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the initial pressure profile or the pressure boundary conditions. The non-
dimensional form of these equations has been used extensively in the
literature[6,7].

Space and time discretization
In order to solve the set of coupled PDEs that describe the problems we are to
investigate we will use a finite difference approach. In addition, we will
transform the equations using the fractional step method such that we obtain
an explicit equation for the pressure. In the fractional step method, a set of
intermediate velocities u–, v– and w– are introduced such that they are independent
from the pressure gradients. In step 1, the fractional step method entails
introducing these intermediate velocities into the governing equations,
therefore decoupling them from the pressure. The intermediate velocities do
not, in general, satisfy the continuity constraint. In step 2, pressure equations
are introduced and used in order to obtain real velocities from the intermediate
ones. Hence in this scheme, the pressure can be interpreted as an operator
which projects the intermediate velocities into divergence-free space where the
continuity constraint is satisfied. In terms of the approximation of the
derivatives in the governing equations, the selected finite difference approach
involves central differencing in the advective and convective terms of the
equations, and forward differencing in time. This process yields a set of finite
difference equations as follows:

Step 1: x-momentum without pressure term:

(16)

(17)
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(18)

y momentum without pressure term:

(19)

(20)

(21)
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z momentum without pressure term:

(22)

(23)

(24)

Step 2: pressure equation and velocity correctors:
u velocity corrector:

(25)

(26)

(27)
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Partial derivative of equation (25) with respect to x:

(28)

v velocity corrector:

(29)

(30)

(31)

Partial derivative of equation (29) with respect to y:

(32)

w velocity corrector:

(33)

(34)

(35)

Partial derivative of equation (33) with respect to z:

(36)

Adding up equations (28), (32) and (36) yields

(37)
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As one can see, the left-hand side of equation (37) is the same as equation (14),
i.e. a statement of conservation of mass, and is therefore equal to zero, such that
we are left with

(38)

because, in general, the intermediate velocities do not satisfy the conservation
of mass equation (i.e. they are not divergence-free).

Equations (27), (31) and (35) are used to correct the intermediate velocities u–,
v– and w– into u, v and w respectively, after the pressure has been updated by
solving equation (38).

Step 3: energy equation

(39)

(40)

(41)

So, equations (18), (21), (24), (38) and (41), together with the correction equations
mentioned previously, are the finite difference representation of the governing
equations.
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Treatment of the pressure
Because the finite difference formulation used is second-order in x, y and z, and
first-order in time, the system behaves well for a large range of Rayleigh
numbers. We have solved benchmark problems as well as a series of problems
in 3D that include both Dirichlet and Neumann boundary conditions, as well as
problems with complex, multi-body geometries. Nevertheless, because the
problems do not give direct information about the pressure, such information
has to be deduced in other ways. Based on the projection method proposed by
Chorin[4], which is in fact the fractional step method with a first-order
formulation in time, a Neumann condition for the pressure is obtained of the
form:

(42)

where N is the vector of directions [x y z] and U is the vector of velocities [u v w].
In all the problems presented in this study, the velocities in question are
specified at the boundaries, leading to the conclusion that the pressure flux in
any direction at the boundaries is zero.

We limit our work to regular meshes with parallelepiped cells. For that
reason there are nodes, such as the corners of the cavities studied, at which the
given pressure information is not helpful. Our solution is to transform equation
(38) such that the solution scheme is applied to the pressure at the centre of the
mesh cells, yielding a value ppp. Then, ppp is distributed back to the mesh
nodes in order to obtain p at all points, including the cavity corners. Our
solution of the benchmark problem suggests that our approach is not only valid
but also accurate. 

We start by creating a new mesh system based on the centre of the cells of the
original grid. Therefore, the number of grid points in the x–, y– and z– directions is
Nx–, Ny– and Nz–, where Nx– = Nx – 1, Ny– = Ny – 1 and Nz– = Nz – 1. We want to
solve equation (38) in the new grid system. Figure 1 shows the nodes of the
original system as well as the nodes of the new one. In the new grid space x–-y–-z–

we count the nodes in x– with r, the nodes in y– with s and the nodes in z– with t.
Remember, in the original space x-y-z we count the nodes in x with i, the nodes
in y with j and the nodes in z with k. So if we apply a finite difference
formulation to equation (38) in the new grid system we obtain

(43)
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which, in terms of the intermediate velocity values at the nodes of the original
grid, becomes

(44)

where

(45)

Figure 1.
Two-dimensional

projection of the three-
dimensional grid

system used. Notice that
the thick line represents

a system boundary
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(46)

(47)

(48)

(49)

(50)

Given equation (44), we can solve for the pressure at the centres of the grid cells.
Redistributing ppp to the nodes of the original mesh is a simple operation
governed by the way the mesh cells surround the mesh node in question and the
pressure boundary conditions.

Method of solution
Elliptic partial differential equations, when reduced to finite difference
equations by using central differencing, generate a set of algebraic equations
that can be solved by two major classes of methods. Direct methods rely on
solving the matrix problem at hand by Gaussian elimination, Cramer’s rule,
matrix inversion, lower upper (LU) decomposition or any other similar scheme.
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Direct solvers are versatile, but run into trouble as the number of unknowns of
the system increases, because the number of operations required to solve it
increases very rapidly, and so does the computational time. Nevertheless, there
are direct solver algorithms that exploit characteristics of the system of
equations to speed up the solution process, such as the conjugate gradient
method (CG), but there is a trade-off in terms of the complexity of the computer
algorithms and their implementation. The other general class of solution
schemes for elliptic equations has been labelled iterative schemes. Iterative
schemes include schemes such as the Jacobi method, the Gauss-Seidel method
(GS), the line Gauss-Seidel method (LGS), the point successive over-relaxation
method (PSOR), the line successive over-relaxation method (LSOR), the
alternating direction implicit method (ADI) and others. All of these schemes
rely on the same basic strategy, with few changes designed to increase the rate
of convergence to the actual solution. The tactic can be described as follows. To
start the algorithms, a solution is guessed. The equation is rearranged such that
the desired nodal value or values become the unknowns, and the other nodes are
moved to the opposite side of the difference equation. A dummy time index m is
introduced to represent the current iteration, such that m + 1 represents the
next one. Then, the unknowns are indexed at the m + 1th iteration level, and the
knowns are indexed at the mth iteration level. The algorithm scans through the
mesh in such a way that, at the end, both a value at the m + 1th iteration and at
the mth iteration exists for every point in the mesh. Then we define a parameter
ε such that

(51)

that is, ε is the sum of all the differences between the value of X at the i, j, kth
mesh points at the mth time level, and the value of X at the same mesh point but
at the m + 1th time level, where X is the unknown quantity in question. The
value of ε can be used as a measure of how different two consecutive iterations
are. The process of solution is repeated until the value of ε goes below the
desired tolerance. At that moment, the latest value of X is the solution.

Why do these schemes converge at all? In general, iterative schemes rewrite
spatially discretized time independent elliptic equations in a form
indistiguishable from that of spatially and temporally discretized time-
dependent parabolic equations. In the case of parabolic equations, their
solutions converge to a steady state as real time progresses. Identically, elliptic
equations with iterative solvers will also converge to a final state as the number
of iterations increases. However, the iteration counter, although time-like, has no
physical meaning whatsoever.

The most general version of the iterative schemes is the Jacobi method,
which corresponds to the previous description. In our study, the PSOR scheme
was selected as the solution scheme. In the PSOR, a parameter, ω, is introduced
to accelerate the convergence of the scheme. The optimum value of ω can be
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calculated analytically for a very limited number of simple problems and
boundary conditions. In general, the optimum value is found experimentally. In
addition to this enhancement, the PSOR scheme utilizes the latest updated
values as it scans the mesh, that is, as values are updated they are introduced
into the formulation, increasing the scheme’s performance even more.

In the current study, the PSOR scheme is applied to all the governing
equations. There are various reasons for this. First of all, it can be observed that
after applying the fractional step method, the equation obtained for the
pressure is in fact elliptic, and suited for solution by the PSOR scheme. But
what about the other equations? When a forward difference is introduced to
deal with the time derivatives, the time-dependent equations become elliptic for
any individual time step. Therefore, at every time step, p, θ, u–, v– and w– can be
solved using the PSOR method. This can reduce the complexity of the computer
implementation immensely. The difference equations can be rewritten in PSOR
form as follows:

u– equation:

(52)

where

and

v– equation:
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(53)

where

and

w– equation:

(54)

where
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and

ppp equation:

(55)

where

where

while A, B, C, D, E and F are given by equations (45) through (50) respectively.
θ equation:
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where

and

Benchmark problem: thermally-driven cavity
One classic problem described by the governing equations is the buoyancy-
driven flow of a viscous fluid in a unit square enclosure. This two-dimensional
problem is used as a benchmark and code validation tool owing to the existence
of very accurate and complete studies such as those by de Vahl Davis[1] and
Saitoh and Hirose[2]. Figure 2 is a three-dimensional representation of the
geometry of the problem.

The boundary conditions of the two-dimensional benchmark are

(57)
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(58)

(59)

(60)

In our study we solve the three-dimensional version of the thermally-driven
cavity problem whose boundary conditions can be written as

(61)

(62)

Figure 2.
Geometry for the
benchmark problem
where a unit cube cavity
is heated from the left,
cooled from the right,
and insulated on the
top, bottom, front and
back walls
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(63)

(64)

(65)

(66)

The three-dimensional scheme can solve the two-dimensional benchmark when
the number of nodes in the z direction is equal to 3. With this many nodes in the
z direction, the three-dimensional problem collapses into its two-dimensional
counterpart, so it can be validated. Benchmark results available from various
sources report results for a Pr = 0.71 and a range of Ra from 103 to 106. We have
solved the 2D benchmark for the same Pr and the same Ra range for meshes
with 11 × 11, 21 × 21, 41 × 41 and 61 × 61 grid points. In addition, we have solved
the fully three-dimensional problem for Pr = 0.71 and Rayleigh numbers
ranging from 103 to 106 in meshes with between 11 × 11 × 11 and 41 × 41 × 17
grid points.

Two-dimensional problem
In the two-dimensional projection of the unit cube thermally-driven cavity
problem, we can examine the effect of the Ra on the flow pattern and the heat
flux profile. Owing to the nature of the problem we can expect both Rayleigh
number dependent and Rayleigh number independent fluid behaviour.

Both the x momentum and y momentum equations have a common non-
linear convective term. The y momentum equation, however, has an extra
convective term related to the buoyant force. We call this term the convective
buoyant term. The term s = RaPr in the momentum equation (11) is a measure
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of how intense the convective buoyant effect is in the fluid system. In addition,
the differential heating of the cavity produces a temperature difference between
the fluid and the heated right wall, and the fluid and the cooled left wall and,
therefore, a heat flux as well. As the RaPr product grows, the same temperature
differential applied to the cavity has more influence on the vertical v velocity of
the fluid, than on the u velocity. As time progresses and heat is transferred from
the walls to the fluid, the vertical and horizontal velocities initiate flow
circulation. As the fluid gets hotter near the right wall, the value of θ of the fluid
close to the wall becomes positive. This produces a positive convective buoyant
term, thus causing a pronounced movement of the fluid against the gravity
gradient, in our case, upwards. In a similar manner, the fluid gets colder near
the left wall, the value of θ of the fluid close to the wall becomes negative. This
produces a negative buoyant term, causing the fluid to move in the direction of
the gravity gradient, in our case, downwards. This fluid movement extends
throughout the cavity, and therefore we expect a clockwise rotation of the fluid
as the system evolves in time. This effect is expected for any Ra, but is, of
course, more pronounced for larger Ra.

In order to visualize the conductive and convective effects, temperature
contour plots are ideal. In an insulated wall, the heat transfer is purely
conductive. We can use the isotherm pattern of such a wall as a reference with
which to compare the temperature contours at different cross-sections of the
system, so as to assess the changes in the way heat is transferred in the fluid.
The isotherms in a purely conductive cross-section have a particular curvature.
Deviations from this isotherm pattern indicate changes in the energy transfer
mechanisms.

For Ra = 103, Figure 3a shows that the isotherm pattern is very close to that
of an insulated wall. That indicates that heat is being mainly transferred by
conduction. This can also be inferred from the flow pattern in Figure 4a. The
flow is perfectly symmetric at this Ra, therefore there are no areas in the flow
where the velocities are significantly different from the rest. The slight change
in the curvature of the isotherms indicates, however, that convection is
beginning to have an effect.

For Ra = 104, the isotherms in Figure 3b show a definite change from pure
conduction. The hot and cold isotherms begin to elongate clockwise in the top
and the bottom of the cavity, respectively. This indicates that hotter fluid can
now be found close to the left and top walls, and cold fluid can be found close to
the right and bottom walls, as expected from the fluid circulation. In addition,
notice that the isotherms are now closer to each other near the left and right
walls. This indicates that the temperature differences at the walls are larger,
therefore, the heat flux is now larger than before, also as expected. We therefore
expect an increase in the local Nu in the regions where the isotherms are closely
packed. The flow pattern has also changed as we can see in Figure 4b. The flow
is still symmetric but the streamlines are closer together near the left and right
walls, which means that the fluid velocity in the vertical direction is increasing



Numerical study
of thermal flows

317

faster than the horizontal velocity, due to the added effect of the convective
buoyant (sθ) term.

For Ra = 105, Figure 3c shows that the isotherm pattern is an extension of
what is observed at 104. The isotherms are even closer together at the hot and
cold walls, so the heat flux is still increasing, and their curvature indicates that
the flow is much more convective. Nevertheless, there is a basic difference
between the flow pattern at 105 and that at 104. As we can observe in Figure 4c,
the streamline pattern has decentralized and in fact created two identical
circulation cells. The streamline pattern near the heated walls is more closely
packed, indicating an increase in v velocity due to the even stronger effect of the
Ra. As a final observation, one can see that the isotherm pattern follows the
streamline pattern closely, that is, near the new circulation cells, the isotherms
are bent to follow the streamlines.

Finally, for Ra = 106, the isotherm pattern in Figure 3d is extremely bent near
the heated walls. The heat flux is very large near the walls, as one can observe
from the closeness of the isothermal lines. In terms of the fluid motion, Figure
4d shows that the two cells from the 105 case still exist but have elongated in the
y direction, and have moved farther apart in the x direction. Notice that the flow
circulation at the cells is still not strong enough to create local mixing of fluid,
that is, we are not observing folding of the isotherms or formation of more than
one rotation cell. Finally, from Figure 5 it is expected that the pressure field is
influenced by the cavity corners.

Figure 3.
Temperature contours
or isotherms for (a) Ra
= 103, (b) Ra = 104, (c)
Ra = 105, (d) Ra = 106
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Figure 4.
Streamline pattern for
(a) Ra = 103, (b) Ra =
104, (c) Ra = 105, (d) Ra
= 106

Figure 5.
Pressure contours or
isobars for (a) Ra = 103,
(b) Ra = 104, (c) Ra =
105, (d) Ra = 106
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The increase in the heat flux due to the increase in the Ra, evidenced in the way
the isotherms are packed together near the heated walls, can be better observed
in the change of the local Nu at the hot and cold walls as the Ra increases.
Figures 6 and 7 show the value of the local Nu at the hot right wall and the cold
left wall respectively.

Figure 6.
Hot wall (0, y) Nu for (a)

Ra = 103, (b) Ra = 104,
(c) Ra = 105, (d) Ra = 106

Figure 7.
Cold wall (1, y) Nu for
(a) Ra = 103, (b) Ra =

104, (c) Ra = 105, (d) Ra
= 106



HFF
7,4

320

As we can see, the local Nu increases as the Ra, as expected. We can also
observe that the local Nu pattern of the cold left wall is the inverted mirror
image of the Nu pattern of the hot right wall. This is due to our definition of
non-dimensional temperature and the choice of its values at the walls. It might
be important also to mention that, as can be observed in the plots, the maximum
local Nu always occurs close to the bottom left-hand corner on the hot right
wall, and close to the top left-hand corner on the cold left wall.

Quantitatively, Table I presents and compares our numerical results to those
of de Vahl Davis[1]. As expected, the discrepancies between the benchmark
solution and the numerical solution hereby presented are within the error
margins reported by de Vahl Davis between extrapolated and nodal values of
the solutions.

Tables II-V are the results of a grid-dependence study of the benchmark
solution for all cases between with Ra between 103 and 106. As can be inferred
from the data in these tables, the present numerical solution approaches the
benchmark solution as the mesh is refined.

Three-dimensional problem
In the full three-dimensional version of the thermally driven cavity, the flow
develops in the x, y and z directions, giving rise to complex fluid flow. Owing to
the nature of the problem geometry and its governing equations, we can infer
certain aspects of the fluid behaviour in three dimensions.

First of all, the flow is symmetric with respect to the central cross-section at
z = 0.5, i.e. cross-sections at z = 0.5 ± ∆z are identical. This reduces the number

Ra
103 104 105 106

Unknown M&R DVD M&R DVD M&R DVD M&R DVD

|Ψmid| 1.193 1.174 5.128 5.071 9.520 9.111 16.366 16.320
|Ψmax| 1.193 1.174 5.128 5.071 9.912 9.612 16.754 16.750
x 0.500 0.500 0.500 0.500 0.275 0.285 0.150 0.151
y 0.500 0.500 0.500 0.500 0.575 0.601 0.525 0.547
umax 3.647 3.649 16.300 16.178 34.607 34.730 64.860 64.630
x = 0.5, y 0.825 0.813 0.817 0.823 0.850 0.855 0.853 0.850
vmax 3.713 3.697 19.723 19.617 68.909 68.590 221.276 219.360
x, y = 0.5 0.175 0.178 0.117 0.119 0.067 0.066 0.039 0.038
Nu0 1.117 1.117 2.223 2.238 4.486 4.509 8.800 8.817
Numax 1.504 1.505 3.490 3.528 7.552 7.717 17.387 17.925
y 0.100 0.092 0.150 0.143 0.083 0.081 0.039 0.038
Numin 0.694 0.692 0.586 0.586 0.724 0.729 0.975 0.989
y 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table I.
Comparison of the
numerical results by
Moreno and Ramaswamy
(M&R) and the
benchmark solutions by
de Vahl Davis (DVD)
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of cross-sections we need to present. Second, for every Ra, the xy cross-section
at z = 0.5 is almost identical to the two-dimensional solution for the same Ra.
This behaviour can be explained by the fact that the two-dimensional driven
cavity problem can be interpreted as the solution to the three-dimensional

Unknown 21 × 21 % error 41 × 41 % error DVD

umax 3.638 –0.30 3.647 –0.05 3.649
y 0.800 –1.60 0.825 1.50 0.813
vmax 3.691 –0.16 3.713 0.43 3.697
x 0.200 1.10 0.175 –1.60 0.178
Nu0 1.113 –0.36 1.117 0.00 1.117
Numax 1.494 –0.73 1.504 –0.07 1.505
y 0.100 8.70 0.100 8.70 0.092
Numin 0.700 1.16 0.694 0.29 0.692
y 1.000 0.00 1.000 0.00 1.000

Table II.
Grid-dependence study

of the solution to the
two-dimensional

benchmark problem for
Pr = 0.71 and Ra = 103

Unknown 21 × 21 % error 41 × 41 % error 61 × 61 % error DVD

umax 16.172 –0.04 16.232 0.33 16.300 0.75 16.178
y 0.800 –2.90 0.825 0.24 0.817 –0.72 0.823
vmax 19.543 –0.38 19.689 0.37 19.723 0.54 19.617
x 0.100 –15.9 0.125 5.04 0.117 –1.70 0.119
Nu0 2.202 –1.61 2.234 –0.18 2.223 –0.67 2.238
Numax 3.430 –2.78 3.503 –0.71 3.490 –1.08 3.528
y 0.150 4.80 0.150 4.80 0.150 4.80 0.143
Numin 0.598 2.05 0.588 0.34 0.586 0.00 0.586
y 1.000 0.00 1.000 0.00 1.000 0.00 1.000

Table III.
Grid-dependence study

of the solution to the
two-dimensional

benchmark problem for
Pr = 0.71 and Ra = 104

Unknown 21 × 21 % error 41 × 41 % error 61 × 61 % error DVD

umax 34.637 –1.05 34.461 –0.77 34.607 –0.35 34.730
y 0.850 –0.60 0.850 –0.60 0.850 –0.60 0.855
vmax 67.221 –2.00 68.464 –0.18 68.909 0.47 68.590
x 0.050 –24.2 0.075 13.63 0.067 1.5 0.066
Nu0 4.506 –0.07 4.450 –1.31 4.486 –0.51 4.509
Numax 7.419 –3.86 7.400 –4.11 7.552 –2.14 7.717
y 0.100 23.5 0.075 –7.4 0.083 2.5 0.081
Numin 0.793 8.78 0.729 0.00 0.724 –0.69 0.729
y 1.000 0.00 1.000 0.0 1.000 0.00 1.000

Table IV.
Grid dependence study

of the solution to the two-
dimensional benchmark

problem for Pr = 0.71
and Ra = 105
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problem at the central xy cross-section when the z dimension is infinite. We also
expect that, as we get closer to the insulated cavity walls such as the front and
back ones, the fluid velocities will decrease in magnitude owing to the no-slip
boundary condition. This translates into a reduction of the intensity of
convective heat transfer near those cavity walls. In our presentation of the data,
isotherm patterns at the cavity walls are not shown.

The heat transfer behaviour of the three-dimensional fluid system as the Ra
increases is almost identical to that of the two-dimensional one. As the Ra
increases, the fluid’s vertical velocity, v, increases in magnitude faster than its u
and w velocities in the regions where the temperature gradient is non-zero, and
especially in the regions were the gradient is actually large. This will induce an
increase in the local Nu at the heated walls as the Ra increases. This behaviour
is identical to that of the fluid in the two-dimensional simulation.

In terms of the fluid motion, a three-dimensional flow field view would be
best but, although available, is not appropriate for enclosed flows, owing to
their multi-directional nature. Instead, xy, zy and xz cross-sections are presented
for every Ra between 103 and 105.

Table VI presents a series of values obtained from the numerical simulations
of the three-dimensional bench mark problem. We will refer to the values in this
Table as we discuss the behaviour of the flow.

We begin by examining the numerical results for Ra =103. Figure 8 is a
collection of temperature contours or isotherm plots of x versus y cross-sections
of the flow, arranged along the z axis of the system’s volume. As expected, the
curvature of the isotherms increases as we move away from the front or back
wall. The isotherms at x = 0.5 are almost identical to those in Figure 3b, also as
expected. Now, if we look closely at the isotherm pattern, the differences in it as
we move along the z axis are minimal. Moreover, this minimal difference can be
attributed to the fact that we are approaching or receding from an insulated
wall. Therefore, it follows that if there is any effect due to the newly introduced
w velocity in the z direction, it is almost negligible. This could happen if the w

Unknown 41 × 41 % error 61 × 61 % error DVD

umax 64.240 –0.60 64.860 0.36 64.6300
y 0.859 1.1 0.853 0.35 0.8500
vmax 221.461 0.96 221.276 0.87 219.3600
x 0.036 –5.0 0.039 2.9 0.0379
Nu0 8.800 –0.19 8.800 –0.19 8.8170
Numax 17.240 –2.82 17.387 –3.00 17.9250
y 0.036 –4.8 0.039 3.2 0.0378
Numin 0.978 –1.11 0.975 –1.42 0.9890
y 1.000 0.00 1.000 0.00 1.0000

Table V.
Grid-dependence study
of the solution to the
two-dimensional
benchmark problem for
Pr = 0.71 and Ra = 106
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velocity is really small in comparison to the u and v velocities. It turns out that
this is exactly the case.

Figures 9-11 present velocity vector field plots at different cross-sections in
the three major axes, z, x and y respectively. As we can observe in Table VI the
u and v velocities are much larger than the w velocity, as we inferred from the

Ra
Unknown 103 104 105 106

umax 3.1265 16.6227 39.3957 106.2115
vmax 3.8458 19.1779 71.3212 210.3447
wmax 0.4226 1.4960 7.2089 23.9156
Nu0 1.0605 2.1378 4.6722 8.3862
Numax 1.3559 3.5730 7.4681 17.6733
y 0.1 0.125 0.125 0.05
z 0.5 0.4 0.4 0.75
Numin 0.7788 0.6122 0.8856 1.0427
y 1.0 1.0 1.0 1.0
z 0.5 0.6 0.4 0.125

Table VI.
Important numerical
results for the three-

dimensional benchmark
problem simulation

Figure 8.
Temperature contour

plots at three different
cross-sections (x = 0.1, x

= 0.3 and x = 0.5) for
the fully three-

dimensional flow inside
a cubic cavity for

Ra = 103
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isotherm patterns. The w velocity is both seven times smaller than the u
velocity, and about nine times smaller than the v velocity. That is why the
temperature contour plots do not change in shape much as we move along the z
axis. We also observe that the effect of w is minimal when we examine the
available vector field plots. Figure 10 is a collection of y versus z cross-sections
of the flow along the x axis. Therefore the arrows represent the resultants of the
v velocity vector in the y direction and the w velocity vector in the z direction.
Nevertheless, the resultants are mostly parallel to the z axis. In Figure 11 we
have z versus x cross-sections of the flow along the y axis, such that the arrows

Figure 9.
Vector plots for y versus
x cross-sections at
(a) z = 0.1, (b) z = 0.2,
(c) z = 0.3, (d) z = 0.4,
(e) z = 0.5 for Ra = 103



Numerical study
of thermal flows

325

represent the resultants of the vector sum of the w vector in the z direction and
the u velocity in the x direction. Notice that the resultants are mostly parallel to
the x axis. Therefore, we conclude without a doubt that the effect of w in the flow
is negligible for Ra = 103. Moreover, Figures 10c and 11c show that when the v
and u velocities are small, the resultant vectors are almost zero, in other words,
w is negligible. So, the flow rotates clockwise almost uniformly around the z
axis without any significant change as we move in the z direction.

Figure 10.
Vector plots for y versus

z cross-sections at
(a) x = 0.1, (b) x = 0.3,
(c) x = 0.5, (d) x = 0.7,

(e) x = 0.9 for Ra = 103
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Figures 12 and 13 show the local Nu surface over the hot left wall and the cold
right wall of the cavity, respectively. We can see that the distribution of the local
Nu is very similar to that of the two-dimensional benchmark. The Nu at the hot
wall is at its maximum close to its bottom, and minimum at its top. Inversely,
the local Nu at the cold wall is maximum near its top portion, and minimum at
the bottom. In fact, as one can see in Table VI the maximum value of the local
Nu is almost identical to that of the two-dimensional solution. It also occurs at
the z = 0.5 cross-section, as predicted from the geometric configuration.

Figure 11.
Vector plots for z versus
x cross-sections at
(a) y = 0.1, (b) y = 0.3,
(c) y = 0.5, (d) y = 0.7,
(e) y = 0.9 for Ra = 103
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For Ra = 104, the flow’s behaviour is very similar to that at 103. Figure 14 is also
a collection of temperature contours of x versus y cross-sections along the z axis.
Again we observe an increase in isotherm curvature as we move away from the
insulated front wall along the z axis. Nevertheless, the curvature increase is too
low to be a result of w velocity influence. So, we conclude as before that the w
velocity must be much smaller in magnitude than either the u or v velocities.
The vector plots in Figures 15-17 support that conclusion. Resultant vectors

Figure 12.
Hot wall (0, y, z) Nu for

Ra = 103

Figure 13.
Hot wall (0, y, z) Nu for

Ra = 103
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parallel to the y axis in plots of y versus z cross-sections indicate v velocities
much larger than w. In the same fashion, resultant vectors parallel to the x axis
in z versus x cross-section plots indicate u velocities much larger than w
velocities. Vector plots in which the resultants are almost zero support the
conclusion that the w velocity has a minimal effect on the fluid flow. As inferred
from the graphic information, Table VI shows that the w velocity is in fact both
11 times smaller than the w velocity, and about 13 times smaller than the v
velocity. Therefore, owing to the negligible effect of w on the flow, the fluid rolls
clockwise about the z axis, very much like it does when the Ra = 103. At Ra =
104, however, the circulation cell elongates in the x direction such that the
central region of stationary and slowly moving fluid becomes almost twice as
wide as that observed at a Ra = 103.

The local Nu surfaces for both the hot and cold walls can be seen in Figures
18 and 19, respectively. The average value of the local Nu and its maximum
value, together with its location, can be found in Table VI. Notice that these
values are very close to those of the two-dimensional problem at the same Ra.

For Ra = 105, the flow exhibits certain significant changes when compared
with previous cases with different Ra. Figure 20 is again a collection of
temperature contours of x versus y cross-sections along the z axis.

The already observed increase in isotherm curvature as we move away from
the insulated front wall along the z axis is now more pronounced. In contrast

Figure 14.
Temperature contour
plots at four different
cross-sections
(x = 0.125, x = 0.25,
x = 0.375 and x = 0.5)
for the fully three-
dimensional flor inside
a cubic cavity for
Ra = 104
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with cases with lower Ra, the curvature increase is too high to be explained
solely by the closeness of the insulated walls, so we must conclude that it must
be influenced by the w velocity. We also conclude that the w velocity must have
increased with the Ra, although, as before, it must be much smaller in
magnitude than either the u or v velocities. This is because although the
curvature has changed prominently, the overall isotherm pattern has not
changed qualitatively. The vector plots in Figures 21-23 support that
conclusion. Resultant vectors parallel to the y axis in plots of y versus z cross-
sections indicate v velocities much larger than w. Nevertheless, when compared
to similar plots for lower Ra the effect of w on the fluid motion is more visible
now, specially in the bottom near the insulated front wall, and at the top near
the insulated back wall. Similarly, resultant vectors parallel to the x axis in z
versus x cross-section plots indicate u velocities much larger than w velocities.
Table VI indicates that the w velocity is five times smaller than the u velocity,
and at the same time ten times smaller than the v velocity. This is a considerable

Figure 15.
Vector plots for y versus

x cross-sections at
(a) z = 0.125, (b) z = 0.25,

(c) z = 0.375 and
(d) z = 0.5 for Ra = 104
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increase in the relative magnitude of w, if we compare it with that at lower Ra.
The local Nu pattern reflects the effect of the w velocity on the fluid’s behaviour.
For lower Ra the change in the local Nu in the z direction is very smooth and
gradual. However, for Ra =105, the local Nu changes rapidly in the z direction to
a maximum, specially in the regions where the w velocity seems to have a
comparable effect with that of the v and u velocities, as can be seen in Figures
24 and 25. Table VI provides values and locations for the maximum and
minimum local Nu.

Although the w velocity starts to play an important role on the fluid’s
behaviour, the overall flow movement is very much like that at Ra =103 and Ra
= 104. The fluid rolls clockwise around the z axis. However, the circulation cell

Figure 16.
Vector plots for y versus
z cross-sections at
(a) x = 0.1875,
(b) x = 0.3125,
(c) x = 0.5, (d) x = 0.625,
(e) x = 0.75, (f) x = 0.875
for Ra = 104
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present in previous cases finally changes shape into two interconnected cells
which are inverted mirror images of each other.

For Ra =106, the convective effects simply dominate the flow pattern. The
two circulation cells observed at Ra = 105 gain strength and elongate in the y
direction. The effects on the temperature distribution can be observed in the
temperature contours of x versus y cross-sections along the z axis in Figure 26.

The pronounced increase in isotherm curvature is a direct result of the
dominant role of convection at this Ra number. The vector plots in Figures 27-
29 support that conclusion. Resultant vectors parallel to the y axis in plots of y
versus z cross-sections indicate v velocities much larger than w. Nevertheless,
when compared to similar plots for lower Ra the effect of w on the fluid motion

Figure 17.
Vector plots for z versus

x cross-sections at
(a) y = 0.1875, (b) y =

0.3125, (c) y = 0.5, (d) y
= 0.625, (e) y = 0.75, (f) y

= 0.875 for Ra = 104
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is more visible now, specially in the bottom near the insulated front wall, and at
the top near the insulated back wall. Similarly, resultant vectors parallel to the
x axis in z versus x cross-section plots indicate u velocities much larger than w
velocities. However, Table VI indicates that the w velocity is five times smaller
than the u velocity, and at the same time nine times smaller than the v velocity,
a considerable increase in the relative magnitude of w. The local Nu pattern
changes rapidly in the z direction to a maximum in the regions where the w
velocity seems to have a more pronounced effect as can be seen in Figures 30

Figure 18.
Hot wall (0, y, z) Nu for
Ra = 104

Figure 19.
Cold wall (0, y, z) Nu for
Ra = 104
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and 31. Table VI provides values and locations for the maximum and minimum
local Nu.

Our results can be qualitatively compared to those of Pepper[8]. In his work,
the thermally-driven cavity problem with its primitive variable equations is
solved by using a time-split finite element scheme similar to the Petrov-Galerkin
formulation. There are no quantitative results in his paper, nevertheless, his
qualitative results and ours are in agreement.

On the other hand, the work by Fusegi et al.[9] quantifies many of the flow
characteristics in three dimensions and compares them with those of de Vahl
Davis[1] in two dimensions.

Table VII shows a comparison between our numerical simulations and those
by Fusegi et al. In their particular study, an irregular grid of 62 × 62 × 62 grid
points was used to resolve the flow field, in contrast with our 41 × 41 × 17 grid
points regular mesh. It is evident in the comparison that the differences in
locations of the relevant characteristic numbers of the flow are in general within
the difference in resolution of our meshes. More important is the fact that, even
without taking these mesh differences into account, the mean percentage error
between the results is about 4 per cent.

Figures 32 and 33 are isosurface plots of the temperature and the u, v and w
velocity fields for Ra = 104 and Ra = 106, respectively. Although we cannot

Figure 20.
Temperature contour
plots at four different

cross-sections
(x = 0.125, x = 0.25,

x = 0.375 and x = 0.5)
for the fully three-

dimensional flow inside
a cubic cavity for

Ra = 105
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Figure 21.
Vector plots for y versus
x cross-sections at
(a) z = 0.125,
(b) z = 0.25, (c) z = 0.375,
(d) z = 0.5 for Ra = 105

Ra
103 104 105 106

Unknown M&R FEA M&R FEA M&R FEA M&R FEA

umax 0.1321 0.1314 0.1983 0.2013 0.1587 0.1468 0.1320 0.08416
y 0.1750 0.2000 0.1750 0.1833 0.1250 0.1453 0.0500 0.1443
vmax 0.1337 0.1320 0.2210 0.2252 0.2412 0.2471 0.2416 0.2588
x 0.8250 0.8333 0.8750 0.8833 0.9250 0.9353 0.9750 0.9669
Numax 1.4191 1.4200 3.6104 3.6520 7.8709 7.7950 16.5170 17.6700
y 0.1000 0.0833 0.1500 0.6232 0.1000 0.08256 0.0500 0.03793
Numin 0.7306 0.7639 0.5624 0.6110 0.7139 0.7867 1.0874 1.2570
y 1.0000 1.0000 1.0000 1.000 1.0000 1.0000 1.0000 1.0000
Numean 1.0875 1.1050 2.2363 2.3020 4.5776 4.6460 8.8168 9.012

Table VII.
Comparison of the
numerical results by
Moreno and Ramaswamy
(M&R) and the solutions
by Fusegi et al. (FEA)
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resolve all the contour levels that Fusegi et al.[9] present, the levels that are
present in both results are in excellent agreement.

In particular, these plots help visualize how the inner core of the fluid in the
cavity becomes near stagnant, as well as how the temperature stratifies in the
same region as the Rayleigh number increases. It is clear that any three-
dimensional effects as depicted by the w-velocity component migrate from the
centre of the cavity and become only prominent near the cavity’s corners. It is
also of interest to observe how the u and v velocity components are confined to

Figure 22.
Vector plots for y versus

z cross-sections at
(a) x = 0.1875,
(b) x = 0.3125,

(c) x = 0.5, (d) x = 0.625,
(e) x = 0.75, (f) x = 0.875

for Ra = 105
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the regions closest to the isothermal walls and the top and bottom walls of the
cavity as the Rayleigh number increases.

Concluding remarks
An iterative finite difference analysis is performed to study the feasibility of
using such a scheme for the simulation of two- and three-dimensional thermally
driven flows. The first part of this investigation involves deriving the finite
difference formulas required in the application of the fractional step method for

Figure 23.
Vector plots for z versus
x cross-sections at
(a) y = 0.1875,
(b) y = 0.3125,
(c) y = 0.5, (d) y = 0.625,
(e) y = 0.75, (f) y = 0.875
for Ra = 105
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the solution of the Navier-Stokes and energy equations, as well as implementing
the point successive over-relaxation (PSOR) for the solution of the resulting
system of equations. The second part intends to validate the solution scheme by
solving the well-known benchmark problem of the thermally driven square
cavity. The results obtained agree well with benchmark results for low and high
Rayleigh numbers. In addition, we extend the two-dimensional problem into
three dimensions by solving the problem of a thermally-driven cubic cavity.
Steady state solutions of this problem when the walls in the third dimension are

Figure 24.
Hot wall (0, y, z) Nu for

Ra = 105

Figure 25.
Cold wall (0, y, z) Nu for

Ra = 105
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Figure 26.
Temperature contour
plots at four different
cross-sections
(x = 0.125, x = 0.25,
x = 0.375 and x = 0.5)
for the fully three-
dimensional flow inside
a cubic cavity for
Ra = 106

Figure 27.
Vector plots for y versus
x cross-sections at (a) z
= 0.125, (b) z = 0.25,
(c) z = 0.375, (d) z = 0.5
for Ra = 106
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kept insulated indicate little effect of the third velocity component on the flow
pattern other than that due to the no slip boundary condition. In general, for
this conditions, the fluid rolls around the third dimension without major
changes, as if the two-dimensional solution has been projected along the new
axis. Our results agree well with other three-dimensional extensions of the

Figure 28.
Vector plots for y versus

z cross-sections at
(a) x = 0.1, (b) x = 0.3,
(c) x = 0.5, (d) x = 0.7,

(e) x = 0.9 for Ra = 106
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benchmark problem available in the literature. Thanks to this benchmark study
we conclude that the solution method is accurate, that it allows the user easily
to control aspects of the solution process such as required CPU time and
accuracy, and that it is capable of simulating both two- and three-dimensional
problems within acceptable time limits.

Figure 29.
Vector plots for z versus
x cross-sections at
(a) x = 0.1, (b) x = 0.3,
(c) x = 0.5, (d) x = 0.7,
(e) x = 0.9 for Ra = 106
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After validating the present scheme, it is only natural to attack a number of
more complex problems. Part II of this series presents results for two- and three-
dimensional simulations of enclosed natural convective flows in complex
geometries.

In these geometries, internal bodies as well as variations in aspect ratio
across the domain of interest partition it in such a manner that different regions
of the cavities in question experience boundary conditions similar to those seen
in several classical problems in natural convection. In that way, we can study

Figure 30.
Hot wall (0, y, z) Nu for

Ra = 106

Figure 31.
Cold wall (0, y, z) Nu for

Ra = 106
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the interactions of such classic flows as buoyancy effects which become more
and more dominant. We will show how such interactions produce strong three-
dimensional effects that lead to unexpected fluid motions and heat transfer
enhancements and detriments all over these particular domains.
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Top left: temperature
contours inside the
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Figure 33.
Top left: temperature

contours inside the
cavity for Ra = 106.

Contour levels:
(A) 0.9667, (B) 0.9833,

(C) 1.0, (D) 1.017,
(E) 1.033. Top right to

bottom right: isovelocity
contours for u-velocity,

v-velocity and w-
velocity components

respectively for
Ra = 106. Contour levels

for u: (A) –0.12,
(B) –0.06,

(C) 0.06, (D) 0.12.
Contour levels for v:

(A) –0.2, (B) –0.1,
(C) 0.1, (D) 0.2. Contour

levels for w:
(A) –0.024,
(B) –0.012,

(C) 0.012, (D) 0.024


